login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Rolling cube face footprints: number of nXk 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across a corresponding cube edge
12

%I #4 Mar 19 2013 07:25:52

%S 1,4,6,16,48,36,64,576,576,216,256,6144,20992,6912,1296,1024,67584,

%T 622592,765952,82944,7776,4096,737280,19726336,63438848,27951104,

%U 995328,46656,16384,8060928,611319808,5889851392,6467616768,1020002304,11943936

%N T(n,k)=Rolling cube face footprints: number of nXk 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across a corresponding cube edge

%C Table starts

%C ....1......4.........16...........64.............256...............1024

%C ....6.....48........576.........6144...........67584.............737280

%C ...36....576......20992.......622592........19726336..........611319808

%C ..216...6912.....765952.....63438848......5889851392.......522106961920

%C .1296..82944...27951104...6467616768...1771674009600....450204914417664

%C .7776.995328.1020002304.659411697664.534392715870208.389343801904201728

%H R. H. Hardin, <a href="/A223269/b223269.txt">Table of n, a(n) for n = 1..311</a>

%F Empirical for column k:

%F k=1: a(n) = 6*a(n-1)

%F k=2: a(n) = 12*a(n-1)

%F k=3: a(n) = 40*a(n-1) -128*a(n-2)

%F k=4: a(n) = 112*a(n-1) -1024*a(n-2)

%F k=5: [order 6]

%F k=6: [order 9]

%F k=7: [order 19]

%F Empirical for row n:

%F n=1: a(n) = 4*a(n-1)

%F n=2: a(n) = 8*a(n-1) +32*a(n-2)

%F n=3: a(n) = 24*a(n-1) +256*a(n-2) -1024*a(n-3) for n>4

%F n=4: [order 6] for n>7

%F n=5: [order 10] for n>11

%F n=6: [order 23] for n>24

%e Some solutions for n=3 k=4

%e ..0..3..1..2....0..1..0..1....0..4..5..1....0..4..2..4....0..2..1..3

%e ..0..2..4..3....0..3..5..1....0..4..0..3....0..1..0..4....0..3..4..2

%e ..4..2..1..2....0..2..0..1....3..1..5..4....3..4..0..1....0..3..4..0

%e Face neighbors:

%e 0.->.1.2.3.4

%e 1.->.0.2.3.5

%e 2.->.0.1.4.5

%e 3.->.0.1.4.5

%e 4.->.0.3.2.5

%e 5.->.1.3.4.2

%Y Column 1 is A000400(n-1)

%Y Column 2 is 4*12^(n-1)

%Y Column 3 is A223197

%Y Row 1 is A000302(n-1)

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_ Mar 19 2013