login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Two-loop graph coloring a rectangular array: number of nXk 0..4 arrays where 0..4 label nodes of a graph with edges 0,1 1,2 2,0 0,3 3,4 4,0 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph
8

%I #4 Mar 18 2013 21:16:17

%S 5,12,12,32,52,32,80,236,236,80,208,1076,2172,1076,208,528,4908,17828,

%T 17828,4908,528,1360,22388,166892,307144,166892,22388,1360,3472,

%U 102124,1382228,5359892,5359892,1382228,102124,3472,8912,465844,12894316

%N T(n,k)=Two-loop graph coloring a rectangular array: number of nXk 0..4 arrays where 0..4 label nodes of a graph with edges 0,1 1,2 2,0 0,3 3,4 4,0 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph

%C Table starts

%C .....5......12.........32............80...............208..................528

%C ....12......52........236..........1076..............4908................22388

%C ....32.....236.......2172.........17828............166892..............1382228

%C ....80....1076......17828........307144...........5359892.............93770308

%C ...208....4908.....166892.......5359892.........200258884...........6581646956

%C ...528...22388....1382228......93770308........6581646956.........465277782336

%C ..1360..102124...12894316....1641741608......247417877452.......32969186423292

%C ..3472..465844..107283636...28748561780.....8146965446276.....2337308796813336

%C ..8912.2124972..996653548..503440061060...306270743418628...165726502883851820

%C .22800.9693172.8326150836.8816254627208.10089859264898796.11751198778793357708

%H R. H. Hardin, <a href="/A223255/b223255.txt">Table of n, a(n) for n = 1..312</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +4*a(n-2)

%F k=2: a(n) = 5*a(n-1) -2*a(n-2)

%F k=3: a(n) = 2*a(n-1) +75*a(n-2) -126*a(n-3) -70*a(n-4) +48*a(n-5)

%F k=4: a(n) = 20*a(n-1) -28*a(n-2) -299*a(n-3) +436*a(n-4) +476*a(n-5) -460*a(n-6) for n>7

%F k=5: [order 16]

%F k=6: [order 24] for n>25

%F k=7: [order 59]

%e Some solutions for n=3 k=4

%e ..1..0..3..4....0..1..2..1....0..1..0..1....2..0..4..0....0..1..0..3

%e ..0..3..0..3....3..0..1..0....4..0..1..0....0..1..0..4....3..0..4..0

%e ..1..0..2..0....0..1..0..1....0..2..0..2....2..0..1..0....0..1..0..1

%Y Column 1 is A183682(n-1)

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Mar 18 2013