|
|
A223240
|
|
3-loop graph coloring a rectangular array: number of n X 1 0..6 arrays where 0..6 label nodes of a graph with edges 0,1 1,2 2,0 0,3 3,4 4,0 0,5 5,6 6,0 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
|
|
1
|
|
|
7, 18, 60, 168, 528, 1536, 4704, 13920, 42144, 125664, 378528, 1132512, 3403680, 10198752, 30620832, 91813344, 275538336, 826418400, 2479648416, 7438158816, 22316049312, 66945002208, 200841298080, 602511311328, 1807559099808
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = a(n-1) + 6*a(n-2).
G.f.: x*(7 + 11*x) / ((1 + 2*x)*(1 - 3*x)).
a(n) = (64*3^n - 9*(-2)^n) / 30.
(End)
|
|
EXAMPLE
|
Some solutions for n=3:
..0....5....6....0....4....3....1....1....0....1....6....0....2....0....1....5
..1....6....0....3....0....0....2....0....5....0....0....4....1....2....0....0
..0....5....4....0....4....2....1....1....6....5....2....0....2....0....4....5
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|