Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 01 2019 08:47:15
%S 64,96,144,216,324,486,729,547,410,615,461,346,519,389,292,438,657,
%T 493,370,555,416,624,936,1404,2106,3159,2369,1777,1333,1000,1500,2250,
%U 3375,2531,1898,2847,2135,1601,1201,901,676,1014,1521,1141,856,1284,1926,2889
%N Trajectory of 64 under the map n-> A006368(n).
%C It is conjectured that this trajectory does not close on itself.
%H T. D. Noe, <a href="/A223086/b223086.txt">Table of n, a(n) for n = 1..10000</a>
%H J. H. Conway, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.120.03.192">On unsettleable arithmetical problems</a>, Amer. Math. Monthly, 120 (2013), 192-198.
%p f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi;
%p t1:=[64];
%p for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
%p t1;
%t t = {64}; While[n = t[[-1]]; s = If[EvenQ[n], 3 n/2, Round[3 n/4]]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* _T. D. Noe_, Mar 22 2013 *)
%t SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {64}, 100] // Flatten (* _Jean-François Alcover_, Mar 01 2019 *)
%Y Cf. A006369, A006368, A182205.
%Y Trajectories under A006368 and A006369: A180853, A217218, A185590, A180864, A028393, A028394, A094328, A094329, A028396, A028395, A217729, A182205, A223083-A223088, A185589, A185590.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Mar 22 2013