login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers with the property that if the base-4 representation is reversed the result is three times the original number.
2

%I #10 Apr 23 2019 23:53:06

%S 75,315,1275,5115,19275,20475,76875,81915,307275,322875,327675,

%T 1228875,1290555,1310715,4915275,4934475,5161275,5223675,5242875,

%U 19660875,19741515,20644155,20890875,20971515,78643275,78720075,78969675,82575675,82652475,83559675

%N Positive integers with the property that if the base-4 representation is reversed the result is three times the original number.

%C From _Robert Israel_, Apr 23 2019: (Start)

%C All terms are divisible by 15.

%C If x is a term and x < 4^k, then x*(4^k+1) is a term. In particular the sequence is infinite. (End)

%H Robert Israel, <a href="/A223078/b223078.txt">Table of n, a(n) for n = 1..985</a>

%p rev4:= proc(n) local L,i;

%p L:= convert(n,base,4);

%p add(L[-i]*4^(i-1),i=1..nops(L))

%p end proc:

%p Res:= NULL:

%p for d from 2 to 15 do

%p d1:= ceil(d/2); d2:= d-d1;

%p for a from 4^(d1-1) to 4^d1/3 do

%p b:= rev4(a)/3 mod 4^d2;

%p x:= 4^d2*a+b;

%p if rev4(x) = 3*x then Res:= Res, x; fi

%p od od:

%p Res; # _Robert Israel_, Apr 23 2019

%t Select[Range[84*10^6],3#==FromDigits[Reverse[IntegerDigits[#,4]],4]&] (* _Harvey P. Dale_, Mar 03 2018 *)

%Y Cf. A173951, A223077, A223079, A214927.

%K nonn,base

%O 1,1

%A _N. J. A. Sloane_, Mar 14 2013

%E More terms from _Alois P. Heinz_, Mar 14 2013