%I #19 Jan 05 2025 19:51:40
%S 1,2,3,1,4,2,1,5,1,3,2,1,6,2,1,4,1,3,2,1,7,1,3,2,1,5,2,1,4,1,3,2,1,8,
%T 2,1,4,1,3,2,1,6,1,3,2,1,5,2,1,4,1,3,2,1,9,1,3,2,1,5,2,1,4,1,3,2,1,7,
%U 2,1,4,1,3,2,1,6,1,3,2,1,5,2,1,4,1,3,2
%N Gives the column number which contains n in the dual Wythoff array (beginning the column count at 1).
%D Clark Kimberling, Stolarsky interspersions, Ars Combinatoria 39 (1995), 129-138.
%H Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/32-4/kimberling.pdf">The first column of an interspersion</a>, The Fibonacci Quarterly 32 (1994), 301-315.
%e a(23) = 3 because 23 is in the third column of the dual Wythoff array (see A126714).
%Y Cf. A007066, A126714, A047924, A167198, A035614.
%K nonn
%O 1,2
%A _Casey Mongoven_, Mar 11 2013