OFFSET
1,1
COMMENTS
The fact that, when a number k occurs in A114183, floor(k/2) has already appeared, is a key step in the proof that A114183 is a permutation of the natural numbers. This fact is obvious if k is the result of a doubling step. The present sequence is an attempt to gain insight into why it is true when k occurs at a square root step.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..7322
EXAMPLE
The first 50 terms of A114183 are:
1, 2, 4, 8, 16, 32, 5, 10, 3, 6, 12, 24, 48, 96, 9, 18, 36, 72, 144, 288, 576, 1152, 33, 66, 132, 11, 22, 44, 88, 176, 13, 26, 52, 7, 14, 28, 56, 112, 224, 448, 21, 42, 84, 168, 336, 672, 25, 50, 100, 200.
The sequence decreases from 32 to 5, from 10 to 3, from 96 to 9, and so on.
The values of k are therefore 5, 3, 9, 33, 11, 13, 7, 21, 25, ...
and the corresponding values of floor(k/2) are 2, 1, 4, 16, 5, 6, 3, 10, 12, ...
Since 2 appeared in A114183 5 steps before 5, a(1) = 5,
since 1 appeared 8 steps before 3, a(2) = 8,
since 4 appeared 12 steps before 9, a(3) = 12, and so on.
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 08 2013
STATUS
approved