login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222673
T(n,k)=Number of nXk 0..2 arrays with exactly floor(nXk/2) elements unequal to at least one horizontal, vertical or antidiagonal neighbor, with new values introduced in row major 0..2 order
7
1, 0, 0, 0, 0, 0, 3, 2, 2, 3, 4, 9, 2, 9, 4, 8, 24, 40, 40, 24, 8, 10, 80, 90, 348, 90, 80, 10, 50, 288, 1336, 2370, 2370, 1336, 288, 50, 66, 1038, 3458, 20606, 17696, 20606, 3458, 1038, 66, 216, 3608, 44516, 212842, 426362, 426362, 212842, 44516, 3608, 216, 280, 12696
OFFSET
1,7
COMMENTS
Table starts
....1......0........0...........3.............4...............8..............10
....0......0........2...........9............24..............80.............288
....0......2........2..........40............90............1336............3458
....3......9.......40.........348..........2370...........20606..........212842
....4.....24.......90........2370.........17696..........426362.........4030527
....8.....80.....1336.......20606........426362.........9334575.......244592240
...10....288.....3458......212842.......4030527.......244592240......5655834167
...50...1038....44516.....2134959.....115311310......6696876400....433607685391
...66...3608...126476....21085549....1138939624....189469189930..11560192314100
..216..12696..1527344...211716164...33371066606...5486076619642.975276334243798
..280..45024..4599422..2136631932..333504416113.160969581159830
.1120.160364.53131172.21522095442.9869885381863
LINKS
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..1....0..1..1..1....0..0..0..0....0..0..0..1....0..1..0..0
..0..0..0..0....2..1..1..1....1..0..0..0....0..0..0..1....2..0..0..0
..0..0..0..1....0..1..1..1....2..0..0..0....0..0..1..1....0..0..0..0
CROSSREFS
Column 1 is A222395
Sequence in context: A316995 A338241 A222456 * A222666 A335401 A324465
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 28 2013
STATUS
approved