login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222598 Least number k having Collatz (3x+1) sequence with exactly n pairs of odd and even numbers in a row. 2
5, 3, 7, 15, 159, 27, 127, 255, 511, 1023, 1819, 4095, 4255, 16383, 32767, 65535, 77671, 262143, 459759, 1048575, 2097151, 4194303, 7456539, 16777215, 33554431, 67108863, 134217727, 268435455, 125687199, 1073741823, 2147483647, 4294967295, 8589934591 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This sequence is very similar to A213215. It is somewhat surprising that many of these numbers are of the form 2^k - 1. Note that this is true for n = 2, 3, 4, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, and 33; not true for n = 1, 5, 6, 11, 13, 17, 19, 23, and 29.
LINKS
EXAMPLE
The Collatz sequence of 15 is 15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1. It begins with 4 pairs of odd/even numbers.
MATHEMATICA
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; countOnes[t_] := Module[{mx = 0, cnt = 0, i = 0}, While[i < Length[t], i++; If[t[[i]] == 1, cnt++; i++, If[cnt > mx, mx = cnt]; cnt = 0]]; mx]; nn = 15; t = Table[0, {nn}]; t[[1]] = 1; n = 1; While[Min[t] == 0, n = n + 2; c = countOnes[Mod[Collatz[n], 2]]; If[c <= nn && t[[c]] == 0, t[[c]] = n]]; t
CROSSREFS
Cf. A213215.
Sequence in context: A219336 A280235 A135765 * A221470 A030669 A030679
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 02 2013
EXTENSIONS
a(24)-a(33) from Donovan Johnson, Mar 03 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 00:21 EDT 2023. Contains 363029 sequences. (Running on oeis4.)