login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222598
Least number k having Collatz (3x+1) sequence with exactly n pairs of odd and even numbers in a row.
2
5, 3, 7, 15, 159, 27, 127, 255, 511, 1023, 1819, 4095, 4255, 16383, 32767, 65535, 77671, 262143, 459759, 1048575, 2097151, 4194303, 7456539, 16777215, 33554431, 67108863, 134217727, 268435455, 125687199, 1073741823, 2147483647, 4294967295, 8589934591
OFFSET
1,1
COMMENTS
This sequence is very similar to A213215. It is somewhat surprising that many of these numbers are of the form 2^k - 1. Note that this is true for n = 2, 3, 4, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, and 33; not true for n = 1, 5, 6, 11, 13, 17, 19, 23, and 29.
EXAMPLE
The Collatz sequence of 15 is 15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1. It begins with 4 pairs of odd/even numbers.
MATHEMATICA
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; countOnes[t_] := Module[{mx = 0, cnt = 0, i = 0}, While[i < Length[t], i++; If[t[[i]] == 1, cnt++; i++, If[cnt > mx, mx = cnt]; cnt = 0]]; mx]; nn = 15; t = Table[0, {nn}]; t[[1]] = 1; n = 1; While[Min[t] == 0, n = n + 2; c = countOnes[Mod[Collatz[n], 2]]; If[c <= nn && t[[c]] == 0, t[[c]] = n]]; t
CROSSREFS
Cf. A213215.
Sequence in context: A219336 A280235 A135765 * A221470 A030669 A030679
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 02 2013
EXTENSIONS
a(24)-a(33) from Donovan Johnson, Mar 03 2013
STATUS
approved