The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A222579 Least prime p_m with p_m+1 practical such that n=p_m -p_{m-1}+...+(-1)^{m-k}p_k for some 0
 3, 5, 7, 5, 7, 11, 19, 11, 11, 17, 19, 17, 17, 23, 19, 23, 23, 31, 31, 41, 23, 41, 31, 47, 29, 47, 41, 59, 53, 59, 47, 59, 59, 79, 41, 83, 59, 79, 47, 83, 71, 83, 53, 83, 47, 103, 79, 107, 53, 103, 59, 103, 89, 103, 71, 131, 79, 127, 103, 131, 79, 127, 83, 149, 71, 127, 89, 127, 107, 127, 79, 191, 83, 149, 107, 197, 83, 149, 131, 167, 139, 149, 103, 149, 89, 149, 103, 167, 127, 179, 149, 167, 107, 167, 139, 167, 107, 179, 103, 179 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: a(n)<=3n for all n>0. Moreover, a(2n-1)/(2n-1) and a(2n)/(2n) have limits 1 and 2 respectively, as n tends to the infinity. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 Zhi-Wei Sun, On functions taking only prime values, arXiv:1202.6589. EXAMPLE a(6)=11 since 6=11-7+5-3 with 12 and 2 both practical; a(7)=19 since 7=19-17+13-11+7-5+3-2 with 20 and 1 both practical; a(806)=p_{358}=2411 since 806=p_{358}-p_{357}+...+p_{150}-p_{149} with p_{358}+1=2412 and p_{149}-1=858 both practical. Note that a(806)/806 is about 2.9913. MATHEMATICA f[n_]:=f[n]=FactorInteger[n] Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]) Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}] pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0) pp[k_]:=pp[k]=pr[Prime[k]+1]==True pq[k_]:=pq[k]=pr[Prime[k]-1]==True s[0_]:=0 s[n_]:=s[n]=Prime[n]-s[n-1] Do[Do[If[pp[j]==True&&pq[i+1]==True&&s[j]-(-1)^(j-i)*s[i]==m, Print[m, " ", Prime[j]]; Goto[aa]], {j, PrimePi[m]+1, PrimePi[3m]}, {i, 0, j-2}]; Print[m, " ", counterexample]; Label[aa]; Continue, {m, 1, 100}] CROSSREFS Cf. A000040, A005153, A210479. Sequence in context: A225889 A070647 A070949 * A141574 A141261 A077129 Adjacent sequences:  A222576 A222577 A222578 * A222580 A222581 A222582 KEYWORD nonn AUTHOR Zhi-Wei Sun, Feb 25 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 07:08 EDT 2022. Contains 354077 sequences. (Running on oeis4.)