login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator sequence of the n-th convergent of the continued fraction 1/(1+2/(2+2/(3+2/(4+...
4

%I #27 Sep 08 2022 08:46:04

%S 1,2,8,36,196,1248,9128,75520,697936,7130400,79830272,972224064,

%T 12798573376,181124475392,2742464277632,44241677392896,

%U 757593444234496,13725165351006720,262293328557596672,5273316901853946880

%N Numerator sequence of the n-th convergent of the continued fraction 1/(1+2/(2+2/(3+2/(4+...

%C The corresponding denominator sequence is A222467(n).

%C a(n) = Phat(n,2) with the numerator polynomials Phat of A221913. All the given formulas follow from there and the comments given under A084950. The limit of the continued fraction (0 + K_{k>=1} (2/k))/2 = 1/(1+2/(2+2/(3+2/(4+... is (1/2)*sqrt(2)*BesselI(1,2*sqrt(2))/BesselI(0,2*sqrt(2)) = 0.5631786198117... See A222466 for more decimals.

%C For a combinatorial interpretation in terms of labeled Morse codes see a comment on A221913. Here each dash has label x=2, and the dots have label j if they are at position j. Labels are multiplied and all codes on [2,...,n+1] are summed.

%H G. C. Greubel, <a href="/A222468/b222468.txt">Table of n, a(n) for n = 1..445</a>

%F Recurrence: a(n) = n*a(n-1) + 2*a(n-2), a(-1) = 1/2, a(0) = 0, n >= 1.

%F As a sum: a(n) = Sum_{m=0..floor(n/2)} a(n-m,m)*2^m, n >= 1, with a(n,m) = binomial(n-1-m,m)*(n-m)!/(m+1)! = |A066667(n,m)| (Laguerre coefficients, parameter alpha = 1).

%F Explicit form: a(n) = 2*(w/2)^n*(BesselI(1,w)*BesselK(n+1,w) + BesselK(1,w)*BesselI(n+1,w)*(-1)^(n+1)), n >= 1, where w := -2*sqrt(2).

%F E.g.f.: Pi*(BesselJ(1, 2*i*sqrt(2)*sqrt(1-z))* BesselY(1, 2*i*sqrt(2)) - BesselY(1, (2*i)*sqrt(2)*sqrt(1-z))*BesselJ(1, 2*i*sqrt(2)))/sqrt(1-z) with Bessel functions and the imaginary unit i = sqrt(-1). Phat(0,x) = 0.

%F Asymptotics: lim_{n -> infinity} a(n)/n! = BesselI(1,2*sqrt(2)) /sqrt(2) = 2.3948330992734...

%e a(4) = 4*a(3) + 2*a(2) = 4*8 + 2*2 = 36.

%e Continued fraction convergent: 1/(1+2/(2+2/(3+2/4))) = 9/16 = 36/64 = a(4)/A222467(4).

%e Morse code a(5) = 196 from the sum of all 5 labeled codes on [2,3,4,5], one with no dash, three with one dash and one with two dashes: 5!/1 + (4*5 + 2*5 + 2*3)*2 +2^2 = 196.

%t RecurrenceTable[{a[1] == 1, a[2] == 2, a[n] == n*a[n - 1] + 2 a[n - 2]}, a[n], {n, 20}] (* _Ray Chandler_, Jul 30 2015 *)

%o (PARI) m=30; v=concat([1,2], vector(m-2)); for(n=3, m, v[n]=n*v[n-1] +2*v[n-2]); v \\ _G. C. Greubel_, May 17 2018

%o (Magma) I:=[1, 2]; [n le 2 select I[n] else n*Self(n-1) + 2*Self(n-2): n in [1..30]]; // _G. C. Greubel_, May 17 2018

%Y Cf. A084950, A221913, A222467, A001040(n+1) (x=1), A058797 (x=-1).

%K nonn,easy

%O 1,2

%A _Gary Detlefs_ and _Wolfdieter Lang_, Mar 21 2013