login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of Hamiltonian cycles on n X n+1 square grid of points.
4

%I #18 Apr 02 2019 04:06:58

%S 1,2,14,154,5320,301384,49483138,13916993782,10754797724124,

%T 14746957510647992,53540340738182687296,354282765498796010420944,

%U 6040964455632840415885507728,191678405883294971709423926242394

%N Number of Hamiltonian cycles on n X n+1 square grid of points.

%H Peter Tittmann, <a href="http://www.htwm.de/~peter/research/enumeration.html">Enumeration in graphs: counting Hamiltonian cycles</a> [Broken link?]

%H Peter Tittman, <a href="/A222200/a222200.jpg">Illustration of a(4) = 14</a> [Taken from preceding link]

%H Peter Tittmann, <a href="http://web.archive.org/web/20101127064650/https://www.staff.hs-mittweida.de/~peter/research/enumeration.html">Enumeration in graphs: counting Hamiltonian cycles</a> [Backup copy of top page only, on the Internet Archive]

%H <a href="/index/Gra#graphs">Index entries for sequences related to graphs, Hamiltonian</a>

%F a(n) = A321172(n,n+1) = A321172(n+1,n). - _Robert FERREOL_, Apr 01 2019

%Y Cf. A003763, A321172.

%K nonn

%O 2,2

%A _N. J. A. Sloane_, Feb 14 2013