OFFSET
1,1
COMMENTS
REFERENCES
L. E. Dickson, History of the Theory of Numbers, vol. 1, chap. IV.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000
W. Keller and J. Richstein, Fermat quotients that are divisible by p.
FORMULA
A222185(n)^(a(n)-1) == 1 (mod a(n)^2).
EXAMPLE
3 is a prime < 11, and 11^2 divides 3^(11-1)-1 = 59048 = 121*488, so 11 is a member.
MATHEMATICA
Select[ Prime[ Range[500]], Product[ PowerMod[ Prime[k], # - 1, #^2] - 1, {k, 1, PrimePi[#] - 1}] == 0 &]
PROG
(PARI) lista(nn) = {forprime (p=2, nn, ok = 0; forprime(q=2, p-1, if (Mod(q, p^2)^(p-1) == 1, ok=1; break); ); if (ok, print1(p, ", ")); ); } \\ Michel Marcus, Nov 24 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Feb 11 2013
STATUS
approved