

A222184


Primes p such that q^(p1) == 1 (mod p^2) for some prime q < p.


5



11, 43, 59, 71, 79, 97, 103, 137, 263, 331, 349, 359, 421, 433, 487, 523, 653, 659, 743, 859, 863, 907, 919, 983, 1069, 1087, 1091, 1093, 1163, 1223, 1229, 1279, 1381, 1483, 1499, 1549, 1657, 1663, 1667, 1697, 1747, 1777, 1787, 1789, 1877, 1993, 2011, 2213, 2221, 2251, 2281, 2309, 2371, 2393, 2473, 2671, 2719, 2777, 2791, 2803, 2833, 2861, 3037, 3079, 3163, 3251, 3257, 3463, 3511, 3557
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Subsequence of A134307; see its interesting heuristics. (What is the analogous heuristic for the present sequence?)
The smallest corresponding primes q are A222185.


REFERENCES

L. E. Dickson, History of the Theory of Numbers, vol. 1, chap. IV.


LINKS

Giovanni Resta, Table of n, a(n) for n = 1..10000
W. Keller and J. Richstein, Fermat quotients that are divisible by p.


FORMULA

A222185(n)^(a(n)1) == 1 (mod a(n)^2).


EXAMPLE

3 is a prime < 11, and 11^2 divides 3^(111)1 = 59048 = 121*488, so 11 is a member.


MATHEMATICA

Select[ Prime[ Range[500]], Product[ PowerMod[ Prime[k], #  1, #^2]  1, {k, 1, PrimePi[#]  1}] == 0 &]


PROG

(PARI) lista(nn) = {forprime (p=2, nn, ok = 0; forprime(q=2, p1, if (Mod(q, p^2)^(p1) == 1, ok=1; break); ); if (ok, print1(p, ", ")); ); } \\ Michel Marcus, Nov 24 2014


CROSSREFS

Cf. A001220, A039678, A134307, A143548, A222185.
Sequence in context: A089712 A155711 A226617 * A141195 A139853 A023299
Adjacent sequences: A222181 A222182 A222183 * A222185 A222186 A222187


KEYWORD

nonn


AUTHOR

Jonathan Sondow, Feb 11 2013


STATUS

approved



