Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 09 2022 00:34:20
%S 0,1,7,77,1222,26364,739608,26079780,1125791280,58257484128,
%T 3552890064480,251777905728480,20488109614761600,1895120214639868800,
%U 197527783071095930880,23023412842885582176000,2980946191374310495795200,426192103002275699198054400
%N a(n) = n-th second-order hyperharmonic-exponential number, multiplied by n!.
%H Ayhan Dil and Veli Kurt, <a href="https://www.emis.de/journals/INTEGERS/papers/m38/m38.Abstract.html">Polynomials related to harmonic numbers and evaluation of harmonic number series I</a>, INTEGERS, 12 (2012), #A38.
%F a(n) = (Sum_{k=0..n} A008277(n,k) * H2(k)) * A000142(n) where H2(k) is defined by g.f.: - log(1-x)/(1-x)^2. - _Michel Marcus_, Feb 09 2013
%o (PARI)
%o hyp(n,alpha) = {x= y+O(y^(n+1)); gf = - log(1-x)/(1-x)^alpha; polcoeff(gf, n, y);}
%o a(n, alpha=2) = sum(k=0, n, n!*(sum(i=0, k, (-1)^i*binomial(k, i)*i^n)*(-1)^k/k!)*hyp(k,alpha));
%o \\ _Michel Marcus_, Feb 09 2013
%Y Cf. A000142, A008277.
%K nonn
%O 0,3
%A _Michel Marcus_, following a suggestion of _N. J. A. Sloane_ , Feb 09 2013