Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Feb 06 2013 20:03:31
%S 1,1,5,30,209,1573,12478,102714,869193,7514445,66083025,589294500,
%T 5316256278,48431659786,444928748618,4117185679310,38340948482745,
%U 359047299072777,3379057486089649,31942315551724102,303158909307122141,2887629443604011421,27595392738011189028
%N G.f. satisfies: A(x) = sqrt(1 + 2*x*A(x)^4 + 3*x^2*A(x)^6).
%F G.f.: sqrt( (1/x)*Series_Reversion( x*(1-2*x-3*x^2) ) ).
%F a(n) = [x^n] sqrt( 1/(1-2*x-3*x^2)^(2*n+1) ) / (2*n+1).
%F a(n) = A222052(n)/(2*n+1).
%e G.f.: A(x) = 1 + x + 5*x^2 + 30*x^3 + 209*x^4 + 1573*x^5 + 12478*x^6 +...
%e Related expansions.
%e A(x)^2 = 1 + 2*x + 11*x^2 + 70*x^3 + 503*x^4 + 3864*x^5 + 31092*x^6 +...
%e A(x)^4 = 1 + 4*x + 26*x^2 + 184*x^3 + 1407*x^4 + 11280*x^5 + 93606*x^6 +...
%e A(x)^6 = 1 + 6*x + 45*x^2 + 350*x^3 + 2844*x^4 + 23814*x^5 + 204149*x^6 +...
%e where A(x)^2 = 1 + 2*x*A(x)^4 + 3*x^2*A(x)^6.
%e Let G(x) = 1/sqrt(1-2*x-3*x^2) denote the g.f. of A002426,
%e then the array of coefficients of x^k in G(x)^(2*n+1) begins:
%e G(x)^1 : [1, 1, 3, 7, 19, 51, 141, 393,...];
%e G(x)^3 : [1, 3, 12, 40, 135, 441, 1428, 4572,...];
%e G(x)^5 : [1, 5, 25, 105, 420, 1596, 5880, 21120,...];
%e G(x)^7 : [1, 7, 42, 210, 966, 4158, 17094, 67782,...];
%e G(x)^9 : [1, 9, 63, 363, 1881, 9009, 40755, 176319,...];
%e G(x)^11: [1, 11, 88, 572, 3289, 17303, 85228, 398684,...];
%e G(x)^13: [1, 13, 117, 845, 5330, 30498, 162214, 814606,...];
%e G(x)^15: [1, 15, 150, 1190, 8160, 50388, 287470, 1540710,...]; ...
%e in which the main diagonal (A222052) forms this sequence like so:
%e [1/1, 3/3, 25/5, 210/7, 1881/9, 17303/11, 162214/13, 1540710/15,...].
%o (PARI) {a(n)=polcoeff(sqrt(1/x*serreverse(x*(1-2*x-3*x^2)+x^2*O(x^n))),n)}
%o for(n=0,25,print1(a(n),", "))
%o (PARI) {a(n)=polcoeff(1/sqrt(1-2*x-3*x^2+x*O(x^n))^(2*n+1),n)/(2*n+1)}
%o for(n=0,25,print1(a(n),", "))
%Y Cf. A222051, A222052, A002426.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Feb 06 2013