login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of binary arrays indicating the locations of trailing edge maxima of a random length-n 0..4 array extended with zeros and convolved with -1,2,-1
1

%I #4 Feb 06 2013 06:04:09

%S 2,4,8,15,27,47,79,131,215,351,571,927,1503,2435,3943,6383,10331,

%T 16719,27055,43779,70839,114623,185467,300095,485566,785663,1271229,

%U 2056891,3328120,5385015,8713147,14098187,22811377,36909629,59721097,96630848

%N Number of binary arrays indicating the locations of trailing edge maxima of a random length-n 0..4 array extended with zeros and convolved with -1,2,-1

%C Column 4 of A222043

%H R. H. Hardin, <a href="/A222039/b222039.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) -27*a(n-2) +49*a(n-3) -49*a(n-4) +21*a(n-5) +7*a(n-6) -13*a(n-7) +8*a(n-8) -16*a(n-9) +46*a(n-10) -72*a(n-11) +56*a(n-12) -13*a(n-13) -6*a(n-14) -a(n-15) +a(n-16) +11*a(n-17) -21*a(n-18) +11*a(n-19) +28*a(n-20) -61*a(n-21) +56*a(n-22) -40*a(n-23) +30*a(n-24) -7*a(n-25) -22*a(n-26) +47*a(n-27) -80*a(n-28) +112*a(n-29) -130*a(n-30) +128*a(n-31) -72*a(n-32) -22*a(n-33) +58*a(n-34) -22*a(n-35) +3*a(n-36) -42*a(n-37) +104*a(n-38) -123*a(n-39) +42*a(n-40) +78*a(n-41) -90*a(n-42) +4*a(n-43) +43*a(n-44) -28*a(n-45) +4*a(n-46) +5*a(n-47) +26*a(n-48) -84*a(n-49) +74*a(n-50) +11*a(n-51) -43*a(n-52) +14*a(n-53) -7*a(n-54) +11*a(n-55) -3*a(n-56) +14*a(n-57) -34*a(n-58) +3*a(n-59) +29*a(n-60) -6*a(n-61) -7*a(n-62) +a(n-63) -9*a(n-64) +19*a(n-65) -3*a(n-66) -14*a(n-67) -6*a(n-68) +7*a(n-69) +6*a(n-70) -2*a(n-73) +5*a(n-74) +3*a(n-75) -6*a(n-76) -6*a(n-77) -a(n-78) +a(n-79) +a(n-80) +a(n-81) +a(n-82) +a(n-83) +2*a(n-84) -a(n-86)

%e Some solutions for n=7, one extended zero followed by filtered positions

%e ..1....0....1....0....0....0....0....1....1....1....0....1....0....0....0....1

%e ..0....0....0....1....0....0....0....0....0....0....0....0....0....0....0....0

%e ..0....1....1....0....0....1....1....1....0....0....1....1....0....0....0....1

%e ..0....0....0....1....1....0....0....0....1....1....0....0....0....1....0....0

%e ..0....1....1....0....0....1....1....0....0....0....0....0....0....0....0....1

%e ..0....0....0....0....1....0....0....0....0....0....1....1....0....0....0....0

%e ..1....0....1....0....0....1....1....0....0....0....0....0....0....0....1....0

%e ..0....1....0....0....0....0....0....1....0....1....0....1....0....1....0....0

%e ..1....0....0....0....0....1....0....0....1....0....0....0....0....0....1....0

%e ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 06 2013