login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222034
G.f. satisfies: A(x) = Sum_{n>=0} n! * x^n * Product_{k=1..n} A(k*x)/(1 + k*x*A(k*x)).
0
1, 1, 2, 7, 38, 302, 3428, 55083, 1251590, 40289986, 1841412556, 119672298150, 11071253179356, 1459246211179612, 274215745471606536, 73511068056751643571, 28128768433558172885958, 15371204139970896651788090, 12001328910786418412379456956
OFFSET
0,3
COMMENTS
Compare to the identity: 1/(1-x) = Sum_{n>=0} n!*x^n/Product_{k=1..n} (1+k*x).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 38*x^4 + 302*x^5 + 3428*x^6 +...
where, by definition,
A(x) = 1 + x*A(x)/(1+x*A(x)) + 2!*x^2*A(x)*A(2*x)/((1+x*A(x))*(1+2*x*A(2*x))) + 3!*x^3*A(x)*A(2*x)*A(3*x)/((1+x*A(x))*(1+2*x*A(2*x))*(1+3*x*A(3*x))) + 4!*x^4*A(x)*A(2*x)*A(3*x)*A(4*x)/((1+x*A(x))*(1+2*x*A(2*x))*(1+3*x*A(3*x))*(1+4*x*A(4*x))) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, m!*x^m*prod(k=1, m, subst(A, x, k*x+x*O(x^n ))/(1+k*x*subst(A, x, k*x+x*O(x^n)))))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A000366 A341381 A106211 * A337685 A014058 A119602
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2013
STATUS
approved