login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX5 arrays with each row a permutation of 1..5 having at least as many downsteps as the preceding row, with rows in lexicographically nonincreasing order
1

%I #4 Feb 03 2013 09:28:34

%S 120,3853,78376,1227685,16011558,180224522,1788225862,15883318341,

%T 127864299298,942615276569,6419292213136,40684542916124,

%U 241500003506194,1349966084204199,7140088927351586,35880243705890673,171932038247810370

%N Number of nX5 arrays with each row a permutation of 1..5 having at least as many downsteps as the preceding row, with rows in lexicographically nonincreasing order

%C Column 5 of A222005

%H R. H. Hardin, <a href="/A222003/b222003.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 66*a(n-1) -2145*a(n-2) +45760*a(n-3) -720720*a(n-4) +8936928*a(n-5) -90858768*a(n-6) +778789440*a(n-7) -5743572120*a(n-8) +37014131440*a(n-9) -210980549208*a(n-10) +1074082795968*a(n-11) -4922879481520*a(n-12) +20448884000160*a(n-13) -77413632286320*a(n-14) +268367258592576*a(n-15) -855420636763836*a(n-16) +2515943049305400*a(n-17) -6848956078664700*a(n-18) +17302625882942400*a(n-19) -40661170824914640*a(n-20) +89067326568860640*a(n-21) -182183167981760400*a(n-22) +348524321356411200*a(n-23) -624439409096903400*a(n-24) +1049058207282797712*a(n-25) -1654284096099796392*a(n-26) +2450791253481179840*a(n-27) -3413602103063071920*a(n-28) +4472995859186094240*a(n-29) -5516694892996182896*a(n-30) +6406484391866534976*a(n-31) -7007092303604022630*a(n-32) +7219428434016265740*a(n-33) -7007092303604022630*a(n-34) +6406484391866534976*a(n-35) -5516694892996182896*a(n-36) +4472995859186094240*a(n-37) -3413602103063071920*a(n-38) +2450791253481179840*a(n-39) -1654284096099796392*a(n-40) +1049058207282797712*a(n-41) -624439409096903400*a(n-42) +348524321356411200*a(n-43) -182183167981760400*a(n-44) +89067326568860640*a(n-45) -40661170824914640*a(n-46) +17302625882942400*a(n-47) -6848956078664700*a(n-48) +2515943049305400*a(n-49) -855420636763836*a(n-50) +268367258592576*a(n-51) -77413632286320*a(n-52) +20448884000160*a(n-53) -4922879481520*a(n-54) +1074082795968*a(n-55) -210980549208*a(n-56) +37014131440*a(n-57) -5743572120*a(n-58) +778789440*a(n-59) -90858768*a(n-60) +8936928*a(n-61) -720720*a(n-62) +45760*a(n-63) -2145*a(n-64) +66*a(n-65) -a(n-66)

%e Some solutions for n=3

%e ..4..2..3..5..1....2..1..3..5..4....4..2..1..3..5....4..2..3..5..1

%e ..3..5..2..4..1....1..4..3..2..5....4..1..2..5..3....3..1..5..2..4

%e ..1..5..4..3..2....1..4..3..2..5....2..1..4..5..3....1..3..2..5..4

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 03 2013