login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (-x+2*x^2-x^3-x^4-2*x^5)/(-1+3*x-2*x^2-x^4+x^5).
1

%I #14 Nov 29 2018 10:36:07

%S 0,1,1,2,5,12,26,53,104,199,375,700,1299,2402,4432,8167,15038,27677,

%T 50925,93686,172337,317000,583078,1072473,1972612,3628227,6673379,

%U 12274288,22575967,41523710,76374044,140473803,258371642,475219577,874065113,1607656426,2956941213,5438662852,10003260594,18398864765,33840788320,62242913791,114482566991

%N Expansion of (-x+2*x^2-x^3-x^4-2*x^5)/(-1+3*x-2*x^2-x^4+x^5).

%H M. Dairyko, S. Tyner, L. Pudwell and C. Wynn, <a href="http://arxiv.org/abs/1203.0795">Non-contiguous pattern avoidance in binary trees</a>, 2012, arXiv:1203.0795 [math.CO], p. 18 (Class F).

%H Michael Dairyko, Lara Pudwell, Samantha Tyner, Casey Wynn, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i3p22">Non-contiguous pattern avoidance in binary trees</a>. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,0,-1,1).

%F G.f.: x*(1-2*x+x^2+x^3+2*x^4)/((1-x)^2*(1-x-x^2-x^3)).

%t Join[{0},LinearRecurrence[{3,-2,0,-1,1},{1,1,2,5,12},50]] (* _Harvey P. Dale_, Nov 12 2014 *)

%t CoefficientList[Series[x*(1-2*x+x^2+x^3+2*x^4)/((1-x)^2*(1-x-x^2-x^3)) , {x, 0, 50}], x] (* _Stefano Spezia_, Nov 29 2018 *)

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_, Feb 01 2013