Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 14 2017 03:53:51
%S 3,3,423,3,81,423,75,3,0,81,11003,423,155,75,35,3,239,0,151,81,23,
%T 11003,21,423,21,155,341,75,201,35,75,3,21,239,15,0,113,151,21,81,635,
%U 23,1131,11003,2017,21,75,423,1267,21,75,155,253,341,151,75,7931,201,75,35,69,75,213,3,1073,21,423,239,61,15
%N Smallest number k (different from a power of 2) such that A006577(n*k) = A006577(n) + A006577(k), or 0 if no such number exists.
%C A006577 is the number of halving and tripling steps to reach 1 in the '3x+1' problem. If n is a power of 2, a(n) = 3.
%C If k is a power of 2, we obtain trivial results, for example A006577(n*2^m) = A006577(2^m) + A006577(n) = m + A006577(n) => the smallest k is 1.
%C It appears that a(n) = 0 for n of the form 9*2^a = 9, 18, 36, 72, ...
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%e a(3) = 423 because A006577(3*423) = A006577(1269) = 39, and A006577(3) + A006577(423) = 7 + 32 = 39.
%p lst:={ }:C:= proc(n) a := 0 ; x := n ; while x > 1 do if type(x, 'even') then x := x/2:a:=a+1: else x := 3*x+1 ; a := a+1 ; end if; end do; a ; end proc:
%p for m from 0 to 40 do:lst:=lst union {2^m}:od:for n from 1 to 73 do: ii:=0:for k from 2 to 50000 while(ii=0) do:z:=n*k : if {k} intersect lst = {} and C(z)=C(n)+C(k) then ii:=1: printf ( "%d %d \n",n,k):else fi:od: if ii=0 and {n} intersect lst = {} and {k} intersect lst = {} then printf ( "%d %d \n",n,0):else fi:od:
%Y Cf. A006577, A057716.
%K nonn
%O 1,1
%A _Michel Lagneau_, Feb 25 2013