Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Feb 12 2024 13:19:31
%S 0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,14,16,18,20,22,24,
%T 26,28,30,32,34,36,39,42,45,48,51,54,57,60,63,66,69,72,76,80,84,88,92,
%U 96,100,104,108,112,116,120,125,130,135,140,145,150,155
%N Partial sums of floor(n/12).
%C Apart from the initial zeros, the same as A008730.
%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,0,0,0,0,0,0,1,-2,1).
%F a(12n) = A051866(n).
%F a(12n+1) = A139267(n).
%F a(12n+2) = A094159(n).
%F a(12n+3) = A033579(n).
%F a(12n+4) = A049452(n).
%F a(12n+5) = A033581(n).
%F a(12n+6) = A049453(n).
%F a(12n+7) = A033580(n).
%F a(12n+8) = A195319(n).
%F a(12n+9) = A202804(n).
%F a(12n+10) = A211014(n).
%F a(12n+11) = A049598(n).
%F G.f.: x^12/((1-x)^2*(1-x^12)).
%F a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - _Harvey P. Dale_, Mar 23 2015
%e ..0....0....0....0....0....0....0....0....0....0....0....0
%e ..1....2....3....4....5....6....7....8....9...10...11...12
%e .14...16...18...20...22...24...26...28...30...32...34...36
%e .39...42...45...48...51...54...57...60...63...66...69...72
%e .76...80...84...88...92...96..100..104..108..112..116..120
%e 125..130..135..140..145..150..155..160..165..170..175..180
%e 186..192..198..204..210..216..222..228..234..240..246..252
%e 259..266..273..280..287..294..301..308..315..322..329..336
%e 344..352..360..368..376..384..392..400..408..416..424..432
%e 441..450..459..468..477..486..495..504..513..522..531..540
%e ...
%t Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* _Harvey P. Dale_, Mar 23 2015 *)
%Y Cf. A000217, A002620, A130518, A130519, A130520, A174709, A174738, A118729, A218470, A131242, A218530.
%K nonn,tabf,easy
%O 0,14
%A _Philippe Deléham_, Mar 27 2013