login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^n + 3*n.
2

%I #29 Sep 10 2024 20:21:11

%S 1,6,15,36,93,258,747,2208,6585,19710,59079,177180,531477,1594362,

%T 4783011,14348952,43046769,129140214,387420543,1162261524,3486784461,

%U 10460353266,31381059675,94143178896,282429536553,847288609518,2541865828407,7625597485068,22876792455045

%N a(n) = 3^n + 3*n.

%H Vincenzo Librandi, <a href="/A221905/b221905.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-7,3).

%F G.f.: (1 + x - 8*x^2)/((1-x)^2*(1-3*x)).

%F a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3).

%F a(n) = A176805(n) - 1.

%F E.g.f.: exp(x)*(exp(2*x) + 3*x). - _Elmo R. Oliveira_, Sep 10 2024

%t Table[(3^n + 3 n), {n, 0, 30}] (* or *) CoefficientList[Series[(1 + x - 8 x^2)/((1 - x)^2 (1 -3 x)), {x, 0, 30}], x]

%o (Magma) [3^n+3*n: n in [0..30]]; /* or */ I:=[1, 6, 15]; [n le 3 select I[n] else 5*Self(n-1)-7*Self(n-2)+3*Self(n-3): n in [1..30]];

%Y Cf. A107583, A176805, A370658.

%K nonn,easy

%O 0,2

%A _Vincenzo Librandi_, Mar 02 2013