Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:46:04
%S 163,811,1423,1783,2179,3079,3583,9739,11503,13411,14419,17659,22483,
%T 25111,26479,27883,42139,49411,55243,57259,70111,72379,77023,79399,
%U 86743,97039,116443,119359,125299,140779,181603,188911,207811
%N Primes of the form 2*n^2 + 42*n + 19.
%C Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
%C 2*a(n) + 403 is a square. - _Vincenzo Librandi_, Apr 10 2015
%H Vincenzo Librandi, <a href="/A221903/b221903.txt">Table of n, a(n) for n = 1..1000</a>
%t Select[Table[2 n^2 + 42 n + 19, {n, 500}], PrimeQ]
%o (Magma) [a: n in [1..500] | IsPrime(a) where a is 2*n^2 + 42*n + 19];
%Y Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), this sequence (k=9), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
%Y Cf. A054723.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Feb 01 2013