login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer Heron triangles of height n.
4

%I #11 Jul 30 2017 16:37:32

%S 0,0,2,2,2,2,2,6,6,2,2,20,2,2,20,12,2,6,2,20,20,2,2,56,6,2,12,20,2,20,

%T 2,20,20,2,20,56,2,2,20,56,2,20,2,20,56,2,2,110,6,6,20,20,2,12,20,56,

%U 20,2,2,182,2,2,56,30,20,20,2,20,20,20,2,156,2,2

%N Number of integer Heron triangles of height n.

%H Eric M. Schmidt, <a href="/A221838/b221838.txt">Table of n, a(n) for n = 1..10000</a>

%H Sourav Sen Gupta, Nirupam Kar, Subhamoy Maitra, Santanu Sarkar, and Pantelimon Stanica, <a href="http://www.emis.de/journals/INTEGERS/papers/n3/n3.Abstract.html">Counting Heron triangles with Constraints</a>, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A3, 2013.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeronianTriangle.html">Heronian Triangle.</a>

%F a(n) = A221837(n) + A046079(n) = A046079(n)^2 + A046079(n).

%e For n = 3, the two triangles have side lengths (3, 4, 5) and (5, 5, 8), with areas 6 and 12 respectively.

%o (Sage) def A221838(n) : pyth = (number_of_divisors(n^2 if n%2==1 else (n/2)^2) - 1) // 2; return pyth^2 + pyth

%Y Cf. A046079, A221837.

%K nonn

%O 1,3

%A _Eric M. Schmidt_, Jan 27 2013