login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Hardy-Littlewood constant for x^2+x+41.
41

%I #30 Sep 09 2024 13:43:29

%S 3,3,1,9,7,7,3,1,7,7,4,7,1,4,2,1,6,6,5,3,2,3,5,5,6,8,5,7,6,4,9,8,8,7,

%T 9,6,6,4,6,8,5,5,4,5,8,5,6,5,2,9,8,5,8,4,9,1,5,3,9,4,0,7,2,7,9,5,0,2,

%U 6,3,3,1,0,4,2,6,1,1,8,1,4,9,7,3,7,5,5

%N Hardy-Littlewood constant for x^2+x+41.

%D Henri Cohen, Number Theory, Vol II: Analytic and Modern Tools, Springer (Graduate Texts in Mathematics 240), 2007.

%H Christian Axler and Mehdi Hassani, <a href="http://math.colgate.edu/~integers/v53/v53.mail.html">Carleman's inequality over prime numbers</a>, Integers (2021) Vol. 21, #A53.

%H Karim Belabas and Henri Cohen, <a href="/A221712/a221712.gp.txt">Computation of the Hardy-Littlewood constant for quadratic polynomials</a>, PARI/GP script, 2020.

%H Lea Beneish and Christopher Keyes, <a href="https://arxiv.org/abs/2405.06584">How often does a cubic hypersurface have a rational point?</a>, arXiv:2405.06584 [math.NT], 2024. See p. 23.

%H David Broadhurst, <a href="https://arxiv.org/abs/2401.08997">Five families of rapidly convergent evaluations of zeta values</a>, arXiv:2401.08997 [math.NT], 2024.

%H Henri Cohen, <a href="http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi">High-precision calculation of Hardy-Littlewood constants</a>, (1998).

%H Henri Cohen, <a href="/A221712/a221712.pdf">High precision computation of Hardy-Littlewood constants</a>. [Cached pdf version, with permission]

%e 3.31977317747142166532355685764988796646855...

%o (PARI) \\ See Belabas, Cohen link. Run as HardyLittlewood2(x^2+x+41)/2 after setting the required precision.

%Y Cf. A005846, A056561, A202018, A221713, A319906, A331876, A331877.

%K nonn,cons

%O 1,1

%A _N. J. A. Sloane_, Jan 26 2013

%E More terms from _Hugo Pfoertner_, Jan 31 2020