%I #17 Feb 28 2022 01:53:01
%S 1,11,143,1716,20724,248677,2985840,35829937,429979836,5159757900,
%T 61917341772,743008099548,8916100178843,106993202123808,
%U 1283918461295184,15407021535521759,184884258855973380,2218611106271412996,26623333280416468596,319479999364994391924
%N A sum over partitions (q=12), see first comment.
%C Set q=12 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products Product_{k=1..L} f(m_k) where L is the number of different parts in the partition P = [p_1^m_1, p_2^m_2, ..., p_L^m_L].
%C Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)":
%C q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603,
%C q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608,
%C q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612.
%C Sequences where q is not a prime power:
%C q=6: A221578, q=10: A221579, q=12: A221580,
%C q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584.
%H Alois P. Heinz, <a href="/A221580/b221580.txt">Table of n, a(n) for n = 0..300</a>
%p with(numtheory):
%p b:= proc(n) b(n):= add(phi(d)*12^(n/d), d=divisors(n))/n-1 end:
%p a:= proc(n) a(n):= `if`(n=0, 1,
%p add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Feb 03 2013
%t b[n_] := Sum[EulerPhi[d]*12^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 17 2014, after _Alois P. Heinz_ *)
%o (PARI)
%o N=66; x='x+O('x^N);
%o gf=prod(n=1,N, (1-x^n)/(1-12*x^n) );
%o v=Vec(gf)
%K nonn
%O 0,2
%A _Joerg Arndt_, Jan 20 2013