%I #14 Feb 21 2013 15:54:21
%S 1,2,1,2,2,2,3,2,4,3,2,3,4,6,5,4,2,6,6,10,7,2,4,4,9,10,14,11,4,2,8,6,
%T 15,14,22,15,3,4,4,12,10,21,22,30,22,4,3,8,6,20,14,33,30,44,30,2,4,6,
%U 12,10,28,22,45,44,60,42,6,2,8,9,20,14,44,30,66,60,84,56
%N Triangle read by rows: T(n,k) = A000005(n-k+1)*A000041(k-1), n>=1, k>=1.
%F T(n,k) = d(n-k+1)*p(k-1), n>=1, k>=1.
%e For n = 6:
%e -------------------------
%e k A000041 T(6,k)
%e 1 1 * 4 = 4
%e 2 1 * 2 = 2
%e 3 2 * 3 = 6
%e 4 3 * 2 = 6
%e 5 5 * 2 = 10
%e 6 7 * 1 = 7
%e . A000005
%e -------------------------
%e So row 6 is [4, 2, 6, 6, 10, 7]. Note that the sum of row 6 is 4+2+6+6+10+7 = 35 equals A006128(6).
%e .
%e Triangle begins:
%e 1;
%e 2, 1;
%e 2, 2, 2;
%e 3, 2, 4, 3;
%e 2, 3, 4, 6, 5;
%e 4, 2, 6, 6, 10, 7;
%e 2, 4, 4, 9, 10, 14, 11;
%e 4, 2, 8, 6, 15, 14, 22, 15;
%e 3, 4, 4, 12, 10, 21, 22, 30, 22;
%e 4, 3, 8, 6, 20, 14, 33, 30, 44, 30;
%e 2, 4, 6, 12, 10, 28, 22, 45, 44, 60, 42;
%e 6, 2, 8, 9, 20, 14, 44, 30, 66, 60, 84, 56;
%e ...
%Y Mirror of A221530. Columns 1-3: A000005, A000005, A062011. Leading diagonals 1-2: A000041, A139582. Row sums give A006128.
%Y Cf. A140207, A182703.
%K nonn,tabl
%O 1,2
%A _Omar E. Pol_, Jan 19 2013