login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table T(n,k) = number of skeleta of (3+1)-free posets with n clone sets and k tangles
2

%I #5 Jan 20 2013 12:12:27

%S 1,1,1,3,5,1,12,28,16,2,55,165,152,47,4,273,1001,1265,658,136,9,1428,

%T 6188,9919,7315,2547,392,21,7752,38760,75208,71981,35975,9252,1130,51,

%U 43263,245157,558144,657356,431599,159701,32286,3262,127,246675,1562275

%N Table T(n,k) = number of skeleta of (3+1)-free posets with n clone sets and k tangles

%H M. Guay-Paquet, A. H. Morales, E. Rowland, <a href="http://arxiv.org/abs/1212.5356">Structure and enumeration of (3+1)-free posets (extended abstract)</a>, arXiv:1212.5356 [math.CO], 2012.

%F G.f.: S(x, y) is the unique power series solution of the equation S(x, y) = 1 + S(x, y)^2 * x / (1 + x) + S(x, y)^3 * y.

%e There are 28 skeleta of (3+1)-free posets with 1 clone set and 2 tangles.

%e Table begins

%e 1 1 3 12 55 273 ...

%e 1 5 28 165 1001 6188 ...

%e 1 16 152 1265 9919 75208 ...

%e 2 47 658 7315 71981 657356 ...

%e 4 136 2547 35975 431599 4660516 ...

%e 9 392 9252 159701 2277821 28589750 ...

%e ......................................

%Y Cf. A079145, A079146, A221492, A221493

%K nonn,easy,tabl

%O 0,4

%A _Mathieu Guay-Paquet_, Jan 18 2013