login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221457 Number of 0..6 arrays of length n with each element unequal to at least one neighbor, with new values introduced in 0..6 order. 1
0, 1, 2, 7, 25, 102, 456, 2218, 11605, 64647, 379349, 2320555, 14658240, 94843284, 624544847, 4164947151, 28025750099, 189783308469, 1290899153376, 8808076870934, 60230644078721, 412493027114619, 2827998455493193 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Column 6 of A221459.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 16*a(n-1) - 79*a(n-2) + 70*a(n-3) + 361*a(n-4) - 372*a(n-5) - 964*a(n-6) + 144*a(n-7) + 1116*a(n-8) + 720*a(n-9) + 144*a(n-10).

Empirical g.f.: x^2*(1 - 14*x + 54*x^2 + x^3 - 246*x^4 - 41*x^5 + 411*x^6 + 364*x^7 + 91*x^8) / ((1 - x - x^2)*(1 - 2*x - 2*x^2)*(1 - 3*x - 3*x^2)*(1 - 4*x - 4*x^2)*(1 - 6*x - 6*x^2)). - Colin Barker, Aug 05 2018

EXAMPLE

Some solutions for n=6:

..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0

..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1

..2....2....2....2....2....2....1....2....1....2....2....0....2....0....2....2

..1....0....1....3....1....3....2....3....0....1....0....2....2....2....3....1

..3....3....2....1....2....0....2....2....0....0....2....0....0....3....2....2

..1....2....3....2....0....4....3....1....1....1....3....1....1....4....4....1

CROSSREFS

Cf. A221459.

Sequence in context: A150511 A036784 A221456 * A221458 A221453 A097597

Adjacent sequences:  A221454 A221455 A221456 * A221458 A221459 A221460

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jan 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 13:59 EDT 2021. Contains 346438 sequences. (Running on oeis4.)