login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 0..5 arrays of length n with each element unequal to at least one neighbor, with new values introduced in 0..5 order.
1

%I #7 Aug 05 2018 08:23:17

%S 0,1,2,7,25,102,455,2192,11203,59814,329343,1851911,10560334,60776590,

%T 351887190,2045329031,11918417465,69563676328,406447507101,

%U 2376416054328,13900548090293,81332697848104,475968841105687,2785759950405621

%N Number of 0..5 arrays of length n with each element unequal to at least one neighbor, with new values introduced in 0..5 order.

%C Column 5 of A221459.

%H R. H. Hardin, <a href="/A221456/b221456.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 11*a(n-1) - 30*a(n-2) - 21*a(n-3) + 112*a(n-4) + 63*a(n-5) - 119*a(n-6) - 120*a(n-7) - 30*a(n-8).

%F Empirical g.f.: x^2*(1 - 9*x + 15*x^2 + 29*x^3 - 33*x^4 - 57*x^5 - 19*x^6) / ((1 - x - x^2)*(1 - 2*x - 2*x^2)*(1 - 3*x - 3*x^2)*(1 - 5*x - 5*x^2)). - _Colin Barker_, Aug 05 2018

%e Some solutions for n=6:

%e ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0

%e ..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1

%e ..2....2....0....2....2....1....2....2....0....1....1....2....2....2....0....2

%e ..2....1....0....2....0....0....1....1....2....0....2....2....0....3....2....3

%e ..3....3....2....0....3....0....0....1....1....2....3....1....0....4....0....3

%e ..2....4....3....3....0....2....1....2....0....1....1....3....1....0....2....4

%Y Cf. A221459.

%K nonn

%O 1,3

%A _R. H. Hardin_, Jan 17 2013