Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Aug 28 2016 13:57:17
%S 6,12,12,576,66240,15321600,5411750400,2834466324480,2102110586634240,
%T 2130686007341875200,2866934087721639936000,4998512704699099643904000,
%U 11064050379110706817558118400,30552674703715743883429360435200
%N Number of nX3 1..(max n,3) arrays with each row and column having unrepeated values
%C Column 3 of A221438.
%D RJ Stones, S Lin, X Liu, G Wang, On Computing the Number of Latin Rectangles, Graphs and Combinatorics, Graphs and Combinatorics (2016) 32:1187-1202; DOI 10.1007/s00373-015-1643-1
%H R. H. Hardin, <a href="/A221433/b221433.txt">Table of n, a(n) for n = 1..58</a>
%e Some solutions for n=3
%e ..3..2..1....1..2..3....1..2..3....3..1..2....1..3..2....2..1..3....2..3..1
%e ..2..1..3....2..3..1....3..1..2....2..3..1....3..2..1....3..2..1....1..2..3
%e ..1..3..2....3..1..2....2..3..1....1..2..3....2..1..3....1..3..2....3..1..2
%Y Cf. A221438.
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 16 2013