%I
%S 1,1,1,2,6,2,4,27,27,4,7,107,274,107,7,12,461,2648,2648,461,12,21,
%T 1844,23765,51924,23765,1844,21,37,7502,203122,928133,928133,203122,
%U 7502,37,65,29893,1686374,15638551,32233374,15638551,1686374,29893,65,114,119342
%N T(n,k)=Equals two maps: number of nXk binary arrays indicating the locations of corresponding elements equal to exactly two of their horizontal, vertical and antidiagonal neighbors in a random 0..2 nXk array
%C Table starts
%C ..1.....1.......2........4........7.......12........21.......37.....65.114
%C ..1.....6......27......107......461.....1844......7502....29893.119342
%C ..2....27.....274.....2648....23765...203122...1686374.13787513
%C ..4...107....2648....51924...928133.15638551.256020803
%C ..7...461...23765...928133.32233374
%C .12..1844..203122.15638551
%C .21..7502.1686374
%C .37.29893
%C .65
%H R. H. Hardin, <a href="/A221188/b221188.txt">Table of n, a(n) for n = 1..49</a>
%e Some solutions for n=3 k=4
%e ..0..0..0..0....1..0..1..0....1..0..0..0....0..0..0..0....1..1..1..1
%e ..0..0..1..1....0..1..0..1....0..0..1..1....0..0..0..1....0..0..0..0
%e ..1..1..1..0....0..1..1..0....1..0..0..1....0..0..1..0....1..1..1..1
%Y Column 1 is A005251(n+1)
%Y Column 2 is A220529
%K nonn,tabl
%O 1,4
%A _R. H. Hardin_ Jan 04 2013
