OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..250
FORMULA
E.g.f.: Sum_{n>=0} log( sqrt((1+n*x)/(1-n*x)) )^n / n!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 29*x^3/3! + 384*x^4/4! + 8009*x^5/5! + ...
where
A(x) = 1 + arctanh(x) + arctanh(2*x)^2/2! + arctanh(3*x)^3/3! + arctanh(4*x)^4/4! + arctanh(5*x)^5/5! + ...
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, atanh(m*X)^m/m!); n!*polcoeff(Egf, n)}
for(n=0, 20, print1(a(n), ", ") )
(PARI) {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, log(sqrt((1+m*x)/(1-m*X)))^m/m!); n!*polcoeff(Egf, n)}
for(n=0, 20, print1(a(n), ", ") )
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2012
STATUS
approved