Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Apr 16 2013 08:31:12
%S 1,3,5,7,8,10,12,13,14,16,17,19,20,21,23,24,26,27,28,29,31,32,33,35,
%T 36,37,38,40,41,42,43,45,46,47,49,50,51,52,53,55,56,57,58,59,60,62,63,
%U 64,65,67,68,69,70,71,73,74,75,76,77,79,80,81,82,83,84,86
%N Numbers k such that there is no square between prime(k) and prime(k+1).
%C A061265(a(n)) = 0;
%C a(n) = A049084(A224363(n)); A000040(a(n)) = A224363(n).
%H Reinhard Zumkeller, <a href="/A221056/b221056.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LegendresConjecture.html">Legendre's Conjecture</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Legendre%27s_conjecture">Legendre's conjecture</a>
%t Select[Range[86], Ceiling[Sqrt[Prime[#]]]^2 > Prime[# + 1] &] (* _Zak Seidov_, Apr 16 2013 *)
%o (Haskell)
%o import Data.List (elemIndices)
%o a221056 n = a221056_list !! (n-1)
%o a221056_list = map (+ 1) $ elemIndices 0 a061265_list
%o (PARI) {for (n = 1, 86, ceil (sqrt (prime (n)))^2 > prime (n + 1) && print1 (n ","))} \\ _Zak Seidov_, Apr 16 2013
%Y Cf. A038107, A014085.
%K nonn
%O 1,2
%A _Reinhard Zumkeller_, Apr 15 2013