login
Majority value maps: number of n X 4 binary arrays indicating the locations of corresponding elements equal to at least half of their horizontal and antidiagonal neighbors in a random 0..2 n X 4 array.
2

%I #8 Nov 20 2014 10:35:31

%S 7,119,1733,24485,345755,4882030,68933905,973340015,13743460075,

%T 194056216948,2740053437074,38689267213364,546288396106862,

%U 7713534869291859,108914303513829210,1537858544870732685

%N Majority value maps: number of n X 4 binary arrays indicating the locations of corresponding elements equal to at least half of their horizontal and antidiagonal neighbors in a random 0..2 n X 4 array.

%C Column 4 of A221035.

%H R. H. Hardin, <a href="/A221031/b221031.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 22*a(n-1) -139*a(n-2) +446*a(n-3) -825*a(n-4) +817*a(n-5) -168*a(n-6) -528*a(n-7) +480*a(n-8) +48*a(n-9) -208*a(n-10) +64*a(n-11) for n>12.

%e Some solutions for n=3:

%e ..1..1..1..1....0..1..1..0....1..0..0..0....1..1..0..1....0..0..0..1

%e ..0..0..0..1....1..1..1..1....0..0..0..1....1..0..0..1....0..1..1..1

%e ..1..1..1..0....1..0..1..1....1..0..0..0....1..1..0..0....1..1..0..0

%Y Cf. A221035.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 29 2012