%I #13 Jun 24 2023 07:54:52
%S 1026,19458,174762,1170810,6751386,35653338,177967962,854830170,
%T 3994246746,18282889818,82367580762,366439242330,1613682326106,
%U 7046530103898,30553522371162,131684094835290,564617195813466,2409993639295578,10246077161667162,43408725425257050,183332581536692826
%N The Wiener index of the nanostar dendrimer D_3[n] , defined pictorially in the Alikhani - Iranmanesh reference.
%H S. Alikhani and M. A. Iranmanesh, <a href="https://doi.org/10.1007/s11786-016-0259-z">Eccentric connectivity polynomials of an infinite family of dendrimer</a>, Digest J. Nanomaterials and Biostructures, 6 (2011) 253-257.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (11,-42,64,-32).
%F a(n) = -1446 + 2^n*12132+4^n*(8820*n-9660).
%F G.f.: 18*(57+454*x+212*x^2)/((1-x)*(1-2*x)*(1-4*x)^2). - _Bruno Berselli_, Dec 30 2012
%p a := proc (n) options operator, arrow: -1446+12132*2^n+4^n*(8820*n-9660) end proc: seq(a(n), n = 0 .. 20);
%Y Cf. A221009.
%K nonn,easy
%O 0,1
%A _Emeric Deutsch_, Dec 29 2012