login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The Wiener index of the nanostar dendrimer NS[n], defined pictorially in the Wang-Hua reference.
1

%I #11 Jun 23 2023 10:52:03

%S 1437,4263,15675,68163,325779,1602483,7835379,37613427,176915571,

%T 816731763,3710601843,16633811571,73738101363,323845964403,

%U 1411137700467,6107956052595,26286286307955,112564798489203,479941662081651,2038504721744499,8628988563948147,36415869693198963,153263217907335795,643451990789063283,2695404780741722739,11268007106608890483

%N The Wiener index of the nanostar dendrimer NS[n], defined pictorially in the Wang-Hua reference.

%H H. Wang and H. Hua, <a href="https://chalcogen.ro/497_Wang.pdf">Computing the second- and third- connectivity index of an infinite class of dendrimer nanostars</a>, Digest J. Nanomaterials and Biostructures, 5 (2010) 497-502.

%H L. Yang and H. Hua, <a href="https://oam-rc.inoe.ro/articles/modified-terminal-wiener-index-of-a-type-of-dendrimer-nanostars/fulltext">Modified terminal Wiener index of a type of dendrimer nanostars</a>, Optoelectronics and Advanced Materials - Rapid Communications, 5 (2011) 160-163.

%F a(n) = 627 + 2^n*(936*n+1602)+4^n*(432*n-792).

%F G.f.: 3*(479-4806*x+17408*x^2-25152*x^3+13952*x^4)/((1-x)*(1-2*x)^2*(1-4*x)^2). - _Bruno Berselli_, Dec 30 2012

%p a := proc (n) options operator, arrow: 627+2^n*(936*n+1602)+4^n*(432*n-792) end proc: seq(a(n), n = 0 .. 25);

%Y Cf. A221005.

%K nonn,easy

%O 0,1

%A _Emeric Deutsch_, Dec 29 2012