login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 12^(2n+1) + 6 * 12^n + 1: the right Aurifeuillian factor of 12^(6n+3) + 1.
12

%I #20 Feb 14 2024 02:25:44

%S 19,1801,249697,35842177,5159904769,743009863681,106993223294977,

%T 15407021789577217,2218611109320327169,319479999401581608961,

%U 46005119909741205651457,6624737266953695061344257,953962166440743626203987969

%N a(n) = 12^(2n+1) + 6 * 12^n + 1: the right Aurifeuillian factor of 12^(6n+3) + 1.

%C The corresponding left Aurifeuillian factor is A220989.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Cunningham_project">Cunningham Project</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (157,-1884,1728).

%F Aurifeuillian factorization: 12^(6n+3) + 1 = (12^(2n+1) + 1) * A220989(n) * a(n).

%F G.f.: -(2736*x^2-1182*x+19) / ((x-1)*(12*x-1)*(144*x-1)). - _Colin Barker_, Jan 03 2013

%t Table[12^(2n+1) + 6 * 12^n + 1, {n, 0, 10}]

%t LinearRecurrence[{157,-1884,1728},{19,1801,249697},20] (* _Harvey P. Dale_, Mar 26 2022 *)

%o (PARI) a(n)=12^(2*n+1)+6*12^n+1 \\ _Charles R Greathouse IV_, Sep 28 2015

%Y Cf. A092440, A085601, A220978, A198410, A220979-A220989.

%K nonn,easy

%O 0,1

%A _Stuart Clary_, Dec 27 2012