Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 May 18 2019 02:08:47
%S 2,3,4,5,29,41,55,71,791,1079,30239,246960,636481,1360800,2162161,
%T 39412801,107881201,3625549201,170918748000,2355997644001,
%U 237662810985599,4614209634434399,7522575180120001,362645725505263201,10684484093105222399,442709913651892286399,5205240636387758366399
%N Where record values occur in A187824.
%C Since A187824 is unbounded, this sequence is infinite.
%H Robert Israel, <a href="/A220891/b220891.txt">Table of n, a(n) for n = 1..30</a>
%p N:= 20: # number of record values wanted
%p R[1]:= 2: R[2]:= 3: r:= 3: count:= 2:
%p S[3]:= {$0..5}: M[3]:= 6:
%p # M[m] is the lcm of 1..m
%p # S[m] is the set of residues mod M[m] for numbers n with A187824(n)>=m
%p # R[i] is the i'th record value
%p for m from 4 while count < N do
%p M[m]:= ilcm(M[m-1],m); p:= M[m]/M[m-1];
%p if p = 1 then T:= S[m-1]
%p else T:= {seq(seq(a+b*M[m-1],a=S[m-1]),b=0..p-1)}
%p end if;
%p S[m]:= select(t -> member(mods(t,m),{1,0,-1}),T);
%p r:= min(S[m] minus {0,1});
%p if r > R[count] then
%p count:= count+1; R[count]:= r
%p end if;
%p end do:
%p [seq(R[j],j=1..count)];
%p # _Robert Israel_, Dec 31 2012
%o (PARI) {m=0;for(n=1,9e9,m<A187824(n) || next; print1(n","); m=A187824(n))} \\ For illustrative purpose (values < 10^8) only. - _M. F. Hasler_, Dec 31 2012
%Y Cf. A187824, A220890, A056697.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Dec 30 2012