The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220863 Choose smallest m>0 such that the n-th rational prime p splits in the imaginary quadratic extension field K = Q(sqrt(-m)); a(n) = discriminant(K). 3
 -7, -8, -4, -3, -8, -4, -4, -8, -20, -4, -3, -4, -4, -8, -20, -4, -8, -4, -8, -7, -4, -3, -8, -4, -4, -4, -3, -8, -4, -4, -3, -8, -4, -8, -4, -3, -4, -8, -20, -4, -8, -4, -7, -4, -4, -3, -8, -3, -8, -4, -4, -7, -4, -8, -4, -20, -4, -3, -4, -4, -8, -4, -8, -11, -4, -4, -8, -4, -8, -4, -4, -7, -3, -4, -8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = discriminant of extension field defined in A220862. REFERENCES David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Cor. 5.17, p. 105. LINKS Table of n, a(n) for n=1..75. FORMULA Let i = A220862(n). Then a(n) = i if i == 1 (mod 4), otherwise 4i. CROSSREFS Cf. A088192, A220861, A220862. Sequence in context: A359009 A092157 A220351 * A330161 A197823 A011243 Adjacent sequences: A220860 A220861 A220862 * A220864 A220865 A220866 KEYWORD sign AUTHOR N. J. A. Sloane, Dec 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 03:56 EDT 2024. Contains 375044 sequences. (Running on oeis4.)