login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of tilings of a 3 X n rectangle using integer-sided rectangular tiles of equal area.
2

%I #12 Sep 05 2021 19:15:39

%S 1,2,6,4,20,7,54,12,190,23,616,44,2266,91,8136,198,30214,409,111540,

%T 875,415601,1887,1546170,4026,5767198,8649,21503856,18583,80237366,

%U 39868,299369546,85629,1117185300,183962,4169054092,395051,15558753295,848494,58064626980

%N Number of tilings of a 3 X n rectangle using integer-sided rectangular tiles of equal area.

%C a(n)^(1/n) tends to sqrt(2+sqrt(3)) = 1.93185165257813657349... if n is even and to r = (1 + ((29 - 3*sqrt(93))/2)^(1/3) + ((29 + 3*sqrt(93))/2)^(1/3))/3 = 1.46557123187676802665... (where r is the real root of the equation r^2*(r-1) = 1) if n is odd. - _Vaclav Kotesovec_, Sep 07 2016

%H Alois P. Heinz, <a href="/A220769/b220769.txt">Table of n, a(n) for n = 0..1000</a>

%e a(5) = 7:

%e ._________. ._________. ._________. ._________.

%e | | |_________| | | | | | | |_____| | |

%e | | |_________| | | | | | | |_____| | |

%e |_________| |_________| |_|_|_|_|_| |_____|_|_|

%e ._________. ._________. ._________.

%e | |_____| | | | |_____| |_|_|_|_|_|

%e | |_____| | | | |_____| |_|_|_|_|_|

%e |_|_____|_| |_|_|_____| |_|_|_|_|_|

%Y Column k=3 of A220777.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Dec 19 2012