%I #14 Apr 27 2013 13:48:46
%S 3854,3854,3035,3035,3035,3035,3854,4644,4644,4644,4644,4644,3854,
%T 15846,4644,4644,4644,4644,4644,22918,15846,15846,10225,10225,10225,
%U 10225,15846,22918,15846,13364,13364,13364,13364,10225,10225,10225,10225,15846,13364,13364,22918,45012
%N Terms of A220698 that appear in A224218.
%C Terms of A220698 excluding terms that do not appear in A224218.
%C Indices of XOR-positive triangular numbers such that the generated triangular number is also XOR-positive (definition: triangular(i) is XOR-positive if triangular(i) XOR triangular(i+1) = triangular(k) for some k). XOR is the bitwise logical exclusive-or operator.
%C Conjecture: the sequence is infinite.
%C The subsequence with only odd terms begins: 3035, 3035, 3035, 3035, 10225, 10225, 10225, 10225, 10225, 10225, 10225, 10225, 171449, 171449, 236985, 171449, 339249.
%o (C)
%o #include <stdio.h>
%o typedef unsigned long long U64;
%o U64 rootTriangular(U64 a) {
%o U64 sr = 1L<<32, s, b;
%o if (a < (sr/2)*(sr+1)) {
%o sr>>=1;
%o while (a < sr*(sr+1)/2) sr>>=1;
%o }
%o for (b = sr>>1; b; b>>=1) {
%o s = sr+b;
%o if (a >= s*(s+1)/2) sr = s;
%o }
%o return sr;
%o }
%o int main() {
%o U64 a, n, r, t;
%o for (n=0; n < (1L<<32)-1; n++) {
%o a = (n*(n+1)/2) ^ ((n+1)*(n+2)/2);
%o t = rootTriangular(a);
%o if (a == t*(t+1)/2) {
%o a ^= (t+1)*(t+2)/2;
%o r = rootTriangular(a);
%o if (a == r*(r+1)/2) printf("%llu, ", t);
%o }
%o }
%o }
%Y Cf. A000217, A224218, A220698.
%K nonn,base
%O 1,1
%A _Alex Ratushnyak_, Apr 13 2013