%I #4 Dec 18 2012 09:12:27
%S 1,1,1,1,8,1,1,26,26,1,1,118,226,118,1,1,463,2243,2243,463,1,1,1930,
%T 21195,72923,21195,1930,1,1,7843,201598,2126423,2126423,201598,7843,1,
%U 1,32209,1913495,63806966,168897201,63806966,1913495,32209,1,1,131698
%N T(n,k)=Number of ways to reciprocally link elements of an nXk array either to themselves or to exactly two king-move neighbors, without consecutive collinear links
%C Table starts
%C .1.......1..........1.............1..............1...............1
%C .1.......8.........26...........118............463............1930
%C .1......26........226..........2243..........21195..........201598
%C .1.....118.......2243.........72923........2126423........63806966
%C .1.....463......21195.......2126423......168897201.....14158198781
%C .1....1930.....201598......63806966....14158198781...3503850286857
%C .1....7843....1913495....1902974315..1166906554415.837962999003819
%C .1...32209...18172469...56814065240.96567512189416
%C .1..131698..172565016.1695753689937
%C .1..539466.1638746380
%C .1.2208130
%C .1
%H R. H. Hardin, <a href="/A220718/b220718.txt">Table of n, a(n) for n = 1..84</a>
%e Some solutions for n=3 k=4 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
%e .00.69.47.00...68.48.69.47...00.69.47.00...69.49.00.00...00.68.47.00
%e .68.34.17.78...29.27.39.17...69.34.16.47...00.17.17.78...00.23.69.48
%e .26.34.36.24...36.14.36.14...00.16.34.00...36.34.36.24...00.00.00.12
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_ Dec 18 2012