login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to reciprocally link elements of an 2 X n array either to themselves or to exactly one horizontal or antidiagonal neighbor.
1

%I #23 Nov 01 2024 23:39:20

%S 1,5,14,47,149,481,1544,4965,15957,51293,164870,529947,1703417,

%T 5475329,17599456,56570281,181834969,584475733,1878691886,6038716423,

%U 19410365421,62391120801,200545011400,644615789581,2072001259341,6660074556205

%N Number of ways to reciprocally link elements of an 2 X n array either to themselves or to exactly one horizontal or antidiagonal neighbor.

%C Row 2 of A220562.

%C From _Wajdi Maaloul_, Jul 04 2022: (Start)

%C For n > 0, a(n) is the number of ways to tile the S-shaped figure of length n below with squares and dominoes. For instance, a(4) is the number of ways to tile this figure with squares and dominoes.

%C _ _ _ _

%C |_|_|_|_|_

%C |_|_|_|_|

%C (End)

%H R. H. Hardin, <a href="/A220563/b220563.txt">Table of n, a(n) for n = 1..210</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,0,-1).

%F a(n) = 2*a(n-1) + 4*a(n-2) - a(n-4).

%F G.f.: x*(1 + 3*x - x^3) / ((1 + x)*(1 - 3*x - x^2 + x^3)). - _Colin Barker_, Jul 31 2018

%F For n>0, a(n) = A316726(n+1) - A033505(n+1). - _Wajdi Maaloul_, Jul 04 2022

%e Some solutions for n=3, 0=self, 3=ne, 4=w, 6=e, 7=sw (reciprocal directions total 10):

%e 0 6 4 0 0 0 0 7 0 6 4 0 0 0 0 0 7 0 0 6 4

%e 0 6 4 0 0 0 3 6 4 0 0 0 0 6 4 3 0 0 0 0 0

%Y Cf. A220562.

%K nonn,easy

%O 1,2

%A _R. H. Hardin_, Dec 16 2012