login
A220515
Numbers n such that A183054(n) is not equal to A188569(n).
2
24, 47, 49, 74, 96, 99, 116, 124, 145, 149, 162, 174, 194, 199, 224, 237, 243, 249, 274, 277, 292, 299, 324, 331, 341, 346, 349, 358, 374, 390, 399, 424, 439, 449, 474, 479, 488, 499, 500, 507, 524, 537, 549, 566, 574, 586, 599, 600, 624, 635
OFFSET
1,1
COMMENTS
For an algorithm to compute the partition class polynomial Hpart_n(x) see the Bruinier-Ono-Sutherland paper, 3.3. Algorithm 3, p. 15-19. For more information see A222031.
LINKS
J. H. Bruinier, K. Ono, A. V. Sutherland, Class polynomials for nonholomorphic modular functions
A. V. Sutherland, Partition class polynomials, Hpart_n(x), for n = 1..770
EXAMPLE
First three terms are 24, 47, 49 because first 50 terms of A183054 coincide with first 50 terms of A188569 except for the indices 24, 47, 49 as shown below:
(A183054(24) = 3) < (A188569(24) = 21).
(A183054(47) = 3) < (A188569(47) = 27).
(A183054(49) = 5) < (A188569(49) = 35).
Observation:
A183054(24) = A188569(24)/7 = 3.
A183054(47) = A188569(47)/9 = 3.
A183054(49) = A188569(49)/7 = 5.
KEYWORD
nonn
AUTHOR
Omar E. Pol, Feb 27 2013
EXTENSIONS
a(4)-a(50) from Giovanni Resta, Mar 04 2013
STATUS
approved