Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 11 2017 17:52:52
%S 0,0,0,0,0,0,1601292,314949564,17143061738,423677826986,6210264633994,
%T 62831788827614,481992723228798,2982908737810114,15548436178142582,
%U 70420082692285198,283631426534134042,1034163399690010346,3461457325296584554,10754832937513676198
%N Number of ways to place 10 nonattacking kings on an n X n board.
%H Vincenzo Librandi, <a href="/A220467/b220467.txt">Table of n, a(n) for n = 1..1000</a>
%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>
%F a(n) = n^20/3628800 - n^18/8960 + n^17/6720 + 353*n^16/17280 - 53*n^15/1008 - 29467*n^14/13440 + 11867*n^13/1440 + 25901053*n^12/172800 - 107495*n^11/144 - 8467959*n^10/1280 + 122792641*n^9/2880 + 32499630031*n^8/181440 - 112903333*n^7/72 - 16042907329*n^6/6720 + 36445613711*n^5/1008 - 1784819159*n^4/300 - 9997453897*n^3/21 + 85979117831*n^2/140 + 13635070421*n/5 - 5609601346, for n>=9.
%F G.f.: -2*x^7*(97581*x^22 - 1758956*x^21 + 16320562*x^20 - 100734462*x^19 + 443795293*x^18 - 1471049082*x^17 + 3971393292*x^16 - 9304893422*x^15 + 17917931016*x^14 - 22612415810*x^13 + 6949925614*x^12 + 21430418050*x^11 + 9738010368*x^10 - 153051533038*x^9 + 256884162558*x^8 - 71451647970*x^7 - 265785285277*x^6 + 220345759446*x^5 + 251887022384*x^4 + 63841610284*x^3 + 5432696107*x^2 + 140661216*x + 800646)/(x-1)^21.
%t Rest[CoefficientList[Series[-2*x^7*(97581*x^22 - 1758956*x^21 + 16320562*x^20 - 100734462*x^19 + 443795293*x^18 - 1471049082*x^17 + 3971393292*x^16 - 9304893422*x^15 + 17917931016*x^14 - 22612415810*x^13 + 6949925614*x^12 + 21430418050*x^11 + 9738010368*x^10 - 153051533038*x^9 + 256884162558*x^8 - 71451647970*x^7 - 265785285277*x^6 + 220345759446*x^5 + 251887022384*x^4 + 63841610284*x^3 + 5432696107*x^2 + 140661216*x + 800646)/(x-1)^21, {x, 0, 20}], x]]
%Y Cf. A061995 (2 kings), A061996 (3 kings), A061997 (4 kings).
%Y Cf. A061998 (5 kings), A172158 (6 kings), A194788 (7 kings).
%Y Cf. A201369 (8 kings), A201771 (9 kings).
%Y Column k=10 of A193580.
%K nonn
%O 1,7
%A _Vaclav Kotesovec_, Dec 15 2012