Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Aug 09 2023 07:04:58
%S 1,1,1,1,19,73,331,43,281,4511,10873,322921,12179,720817,538759,
%T 87995911,1185403,37171235,46336951,6986985769,2602576465,
%U 243540693677,181777598557,13097400661955,135996437150855,8249498995171439,56213506181241631,601615828819880125,10365435567354511181
%N Define sequence x(n) by x(1)=1, thereafter x(n) = (x(n-1)+n)/(1-n*x(n-1)); sequence gives denominator(x(n)).
%C x(n) = tan( sum_{k=1..n} arctan(k)): see A180657.
%H V. H. Moll, <a href="http://www.tulane.edu/~vhm/papers_html/xn-final.pdf">An arithmetic conjecture on a sequence of arctangent sums</a>, 2012.
%e The x(n) sequence begins 1, -3, 0, 4, -9/19, 105/73, -308/331, 36/43, -423/281, 2387/4511, -26004/10873, ...
%p x:=proc(n) option remember;
%p if n=1 then 1 else (x(n-1)+n)/(1-n*x(n-1)); fi; end;
%p s1:=[seq(x(n),n=1..30)]; # x(n)
%p s2:=map(numer,s1); # A180657
%p s3:=map(denom,s1); # A220447
%t x[n_] := x[n] = If[n == 1, 1, (x[n-1] + n)/(1 - n*x[n-1])];
%t a[n_] := Denominator[x[n]];
%t Table[a[n], {n, 1, 29}] (* _Jean-François Alcover_, Aug 09 2023 *)
%Y For numerators see A180657.
%K nonn,frac
%O 1,5
%A _N. J. A. Sloane_, Dec 22 2012