login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220412 Triangle read by rows, the coefficients of J. L. Fields generalized Bernoulli polynomials. 6

%I #17 Mar 20 2020 03:48:05

%S 1,0,1,0,1,5,0,4,21,35,0,18,101,210,175,0,48,286,671,770,385,0,33168,

%T 207974,531531,715715,525525,175175,0,8640,56568,154466,231231,205205,

%U 105105,25025,0,1562544,10615548,30582796,49534277,49689640,31481450,11911900

%N Triangle read by rows, the coefficients of J. L. Fields generalized Bernoulli polynomials.

%C The Fields polynomials are defined: F_{2*n}(x) = sum(k=0..n, x^k*T(n,k)/A220411(n)) and F_{2*n+1}(x) = 0. See A220002 for an application to the asymptotic expansion of the Catalan numbers.

%D Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969, page 34.

%H J. L. Fields, <a href="http://dx.doi.org/10.1017/S0013091500013171">A note on the asymptotic expansion of a ratio of gamma functions</a>, Proc. Edinburgh Math. Soc. 15 (1) (1966), 43-45.

%F See Y. L. Luke 2.8(3) for the generalized Bernoulli polynomials and 2.11(16) for the special case of Fields polynomials. The Maple and Sage programs give a recursive definition.

%e The coefficients T(n,k):

%e [0], [1]

%e [1], [0, 1]

%e [2], [0, 1, 5]

%e [3], [0, 4, 21, 35]

%e [4], [0, 18, 101, 210, 175]

%e [5], [0, 48, 286, 671, 770, 385]

%e The Fields polynomials:

%e F_0 (x) = 1 / 1

%e F_2 (x) = x / (-6)

%e F_4 (x) = (5*x^2+x) / 60

%e F_6 (x) = (35*x^3+21*x^2+4*x) / (-504)

%e F_8 (x) = (175*x^4+210*x^3+101*x^2+18*x) / 2160

%e F_10(x) = (385*x^5+770*x^4+671*x^3+286*x^2+48*x) / (-3168)

%p FieldsPoly := proc(n,x) local recP, P; recP := proc(n,x) option remember; local k; if n = 0 then return(1) fi; -2*x*add(binomial(n-1,2*k+1)* bernoulli(2*k+2)/(2*k+2)*recP(n-2*k-2,x), k=0..(n/2-1)) end:

%p P := recP(n,x); (-1)^iquo(n,2)*denom(P); sort(expand(P*%)) end:

%p with(PolynomialTools): A220412_row := n -> CoefficientList(FieldsPoly( 2*i,x),x): seq(A220412_row(i),i=0..8);

%t F[0, _] = 1; F[n_, x_] := F[n, x] = -2*x*Sum[Binomial[n-1, 2*k+1]*BernoulliB[2*k+2]/(2*k+2)*F[n-2*k-2, x], {k, 0, n/2-1}]; t[n_, k_] := Coefficient[(-1)^Mod[n, 2]*F[2*n, x] // Together // Numerator, x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 09 2014 *)

%o (Sage)

%o @CachedFunction

%o def FieldsPoly(n):

%o A = PolynomialRing(QQ, 'x')

%o x = A.gen()

%o if n == 0: return A(1)

%o return -2*x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(2*k+2)*FieldsPoly(n-2*k-2) for k in (0..n-1))

%o def FieldsCoeffs(n):

%o P = FieldsPoly(n)

%o d = (-1)^(n//2) * denominator(P)

%o return list(d * P)

%o A220412_row = lambda n: FieldsCoeffs(2*n)

%Y Cf. A220411.

%K nonn,tabl

%O 0,6

%A _Peter Luschny_, Dec 30 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 09:23 EDT 2024. Contains 371782 sequences. (Running on oeis4.)