login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The denominators of J. L. Fields generalized Bernoulli polynomials.
3

%I #10 Jun 27 2019 08:38:53

%S 1,-6,60,-504,2160,-3168,786240,-51840,1762560,-82736640,1437004800,

%T -858470400,101896704000,-1881169920,8659353600,-855305256960,

%U 14071151001600,-150493593600,8252165711462400,-70431001804800,24434139856896000,-1076294062964736000

%N The denominators of J. L. Fields generalized Bernoulli polynomials.

%C See A220412 for definitions and references.

%t F[0, _] = 1; F[n_, x_] := F[n, x] = -2x Sum[Binomial[n-1, 2k+1] BernoulliB[2k+2]/(2k+2) F[n-2k-2, x], {k, 0, n/2-1}] // Expand;

%t a[n_] := (-1)^n Denominator[Together[F[2n, x]]];

%t Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Jun 27 2019 *)

%K sign

%O 0,2

%A _Peter Luschny_, Dec 30 2012