%I #4 Dec 13 2012 09:58:16
%S 7,79,757,7462,73066,715412,7003040,68557435,671141189,6570141318,
%T 64318370539,629644495493,6163902725507,60341505579868,
%U 590712971700130,5782782703158232,56610532354660692,554188621256117979
%N Majority value maps: number of nX4 binary arrays indicating the locations of corresponding elements equal to at least half of their horizontal and antidiagonal neighbors in a random 0..1 nX4 array
%C Column 4 of A220386
%H R. H. Hardin, <a href="/A220382/b220382.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 7*a(n-1) +33*a(n-2) -35*a(n-3) -198*a(n-4) -52*a(n-5) +60*a(n-6) -248*a(n-7) +327*a(n-8) +2885*a(n-9) +3686*a(n-10) -391*a(n-11) -2646*a(n-12) +1576*a(n-13) +5693*a(n-14) +4779*a(n-15) +1858*a(n-16) +790*a(n-17) +571*a(n-18) +145*a(n-19) -48*a(n-20) -28*a(n-21) -4*a(n-22) for n>23
%e Some solutions for n=3
%e ..0..1..1..1....0..1..1..1....1..1..1..0....1..0..0..0....0..1..0..1
%e ..1..1..1..0....1..0..0..0....1..1..0..1....1..1..0..1....1..1..1..1
%e ..1..1..0..0....1..0..0..0....1..0..1..0....1..0..1..1....1..0..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Dec 13 2012